Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 12(2): e08395, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35154643

RESUMO

Recent advances in digital data collection have spurred accumulation of immense quantities of data that have potential to lead to remarkable ecological insight, but that also present analytic challenges. In the case of biologging data from birds, common analytical approaches to classifying movement behaviors are largely inappropriate for these massive data sets.We apply a framework for using K-means clustering to classify bird behavior using points from short time interval GPS tracks. K-means clustering is a well-known and computationally efficient statistical tool that has been used in animal movement studies primarily for clustering segments of consecutive points. To illustrate the utility of our approach, we apply K-means clustering to six focal variables derived from GPS data collected at 1-11 s intervals from free-flying bald eagles (Haliaeetus leucocephalus) throughout the state of Iowa, USA. We illustrate how these data can be used to identify behaviors and life-stage- and age-related variation in behavior.After filtering for data quality, the K-means algorithm identified four clusters in >2 million GPS telemetry data points. These four clusters corresponded to three movement states: ascending, flapping, and gliding flight; and one non-moving state: perching. Mapping these states illustrated how they corresponded tightly to expectations derived from natural history observations; for example, long periods of ascending flight were often followed by long gliding descents, birds alternated between flapping and gliding flight.The K-means clustering approach we applied is both an efficient and effective mechanism to classify and interpret short-interval biologging data to understand movement behaviors. Furthermore, because it can apply to an abundance of very short, irregular, and high-dimensional movement data, it provides insight into small-scale variation in behavior that would not be possible with many other analytical approaches.

2.
Ecol Appl ; 32(3): e2544, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35080801

RESUMO

In the United States, the Bald and Golden Eagle Protection Act prohibits take of golden eagles (Aquila chrysaetos) unless authorized by permit, and stipulates that all permitted take must be sustainable. Golden eagles are unintentionally killed in conjunction with many lawful activities (e.g., electrocution on power poles, collision with wind turbines). Managers who issue permits for incidental take of golden eagles must determine allowable take levels and manage permitted take accordingly. To aid managers in making these decisions in the western United States, we used an integrated population model to obtain estimates of golden eagle vital rates and population size, and then used those estimates in a prescribed take level (PTL) model to estimate the allowable take level. Estimated mean annual survival rates for golden eagles ranged from 0.70 (95% credible interval = 0.66-0.74) for first-year birds to 0.90 (0.88-0.91) for adults. Models suggested a high proportion of adult female golden eagles attempted to breed and breeding pairs fledged a mean of 0.53 (0.39-0.72) young annually. Population size in the coterminous western United States has averaged ~31,800 individuals for several decades, with λ = 1.0 (0.96-1.05). The PTL model estimated a median allowable take limit of ~2227 (708-4182) individuals annually given a management objective of maintaining a stable population. We estimate that take averaged 2572 out of 4373 (59%) deaths annually, based on a representative sample of transmitter-tagged golden eagles. For the subset of golden eagles that were recovered and a cause of death determined, anthropogenic mortality accounted for an average of 74% of deaths after their first year; leading forms of take over all age classes were shooting (~670 per year), collisions (~611), electrocutions (~506), and poisoning (~427). Although observed take overlapped the credible interval of our allowable take estimate and the population overall has been stable, our findings indicate that additional take, unless mitigated for, may not be sustainable. Our analysis demonstrates the utility of the joint application of integrated population and prescribed take level models to management of incidental take of a protected species.


Assuntos
Águias , Fatores Etários , Animais , Causas de Morte , Feminino , Humanos , Propilaminas , Sulfetos , Taxa de Sobrevida , Estados Unidos
3.
Ecol Evol ; 11(16): 11267-11274, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34429916

RESUMO

There is increasing pressure on wind energy facilities to manage or mitigate for wildlife collisions. However, little information exists regarding spatial and temporal variation in collision rates, meaning that mitigation is most often a blanket prescription. To address this knowledge gap, we evaluated variation among turbines and months in an aspect of collision risk-probability of entry by an eagle into a rotor-swept zone (hereafter, "probability of entry"). We examined 10,222 eagle flight paths identified and recorded by an automated bird monitoring system at a wind energy facility in Wyoming, USA. Probabilities of entry per turbine-month combination were 4.03 times greater in some months than others, ranging 0.15 to 0.62. The overall probability of entry for the riskiest turbine (i.e., the one with the greatest probability of entry) was 2.39 times greater than the least-risky turbine. Our methodology describes large variation across turbines and months in the probability of entry. If subsequently combined with information on other sources of variation (i.e., weather, topography), this approach can identify risky versus safe situations for eagles under which cost of management, curtailment prescriptions, and collision risk can be simultaneously minimized.

4.
Ecol Evol ; 11(12): 7905-7916, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34188860

RESUMO

A central theme for conservation is understanding how animals differentially use, and are affected by change in, the landscapes they inhabit. However, it has been challenging to develop conservation schemes for habitat-specific behaviors.Here we use behavioral change point analysis to identify behavioral states of golden eagles (Aquila chrysaetos) in the Sonoran and Mojave Deserts of the southwestern United States, and we identify, for each behavioral state, conservation-relevant habitat associations.We modeled behavior using 186,859 GPS points from 48 eagles and identified 2,851 distinct segments comprising four behavioral states. Altitude above ground level (AGL) best differentiated behavioral states, with two clusters of short-distance movement behaviors characterized by low AGL (state 1 AGL = 14 m (median); state 2 AGL = 11 m) and two associated with longer-distance movement behaviors and characterized by higher AGL (state 3 AGL = 108 m; state 4 AGL = 450 m).Behaviors such as perching and low-altitude hunting were associated with short-distance movements in updraft-poor environments, at higher elevations, and over steeper and more north-facing terrain. In contrast, medium-distance movements such as hunting and transiting were over gentle and south-facing slopes. Long-distance transiting occurred over the desert habitats that generate the best updraft.This information can guide management of this species, and our approach provides a template for behavior-specific habitat associations for other species of management concern.

6.
Conserv Biol ; 31(2): 406-415, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27677518

RESUMO

Renewable energy production is expanding rapidly despite mostly unknown environmental effects on wildlife and habitats. We used genetic and stable isotope data collected from Golden Eagles (Aquila chrysaetos) killed at the Altamont Pass Wind Resource Area (APWRA) in California in demographic models to test hypotheses about the geographic extent and demographic consequences of fatalities caused by renewable energy facilities. Geospatial analyses of δ2 H values obtained from feathers showed that ≥25% of these APWRA-killed eagles were recent immigrants to the population, most from long distances away (>100 km). Data from nuclear genes indicated this subset of immigrant eagles was genetically similar to birds identified as locals from the δ2 H data. Demographic models implied that in the face of this mortality, the apparent stability of the local Golden Eagle population was maintained by continental-scale immigration. These analyses demonstrate that ecosystem management decisions concerning the effects of local-scale renewable energy can have continental-scale consequences.


Assuntos
Conservação dos Recursos Naturais , Águias , Vento , Animais , California , Plumas , Dinâmica Populacional , Energia Renovável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...